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Abstract 

A multi-class mixture Rasch model (MMRM) is proposed to account for test speededness. The 

model (1) allows speededness effects to emerge at different test locations for different examinees 

and (2) accounts for speededness effects due to rushed responses as opposed to strictly random 

guessing. This model is examined using data sets simulated from a recently proposed 

speededness model (Wollack & Cohen, 2004) and compared against two previously proposed 

models: the two-class mixture Rasch model (Bolt, Cohen, & Wollack, 2002) and the HYBRID 

model (Yamamoto, 1987; Yamamoto & Everson, 1997). Results for the MMRM appeared to be 

very similar to those observed for the two-class mixture Rasch model. For the datasets generated 

in this study, the HYBRID model appeared to most closely recover the latent class mixing 

proportions and item parameters, although it tended to overestimate the effects of speededness on 

the end-of-test items. 
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A New Multi-Class Mixture Rasch Model for Test Speededness 

Test speededness effects are often observed when examinees do not have sufficient time 

to finish a test. When examinees are rushed or run out of time, they often fail to adequately 

answer items at the end of the test. One implication of speededness is its adverse effects on item 

response theory (IRT) parameter estimates. For example, item difficulty parameters for items at 

the end of the test may be overestimated compared to their difficulties if administered earlier 

(Bolt, Cohen, & Wollack, 2002; Oshima, 1994). Several models have been proposed to address 

problems regarding speededness, including a two-class mixture Rasch model (MRM; Bolt et al., 

2002) and the HYBRID model (Yamamoto 1987; Yamamoto & Everson, 1997). These models 

address speededness effects through the introduction of latent examinee classes that are 

distinguished by individual differences in speededness effects. 

The purpose of this paper is to propose a new multi-class mixture Rasch model (MMRM) 

for isolating the effects of test speededness, to compare this model against previous speededness 

models, and to investigate its performance using several illustrative data sets simulated from a 

recently proposed simulation model for speededness data (Wollack & Cohen, 2004). The 

proposed MMRM blends the appealing features of the MRM and HYBRID models (described 

below). Specifically, the MMRM (1) allows speededness effects to emerge at different test 

locations for different examinees, and (2) accounts for speededness effects due to rushed 

responses as opposed to only random guesses. 

Multi-class Mixture Rasch Model 

Several models that address speededness were examined in this study. The speededness 

model introduced here is a type of multi-class mixture Rasch model (MRMM; Rost, 1990). In 

the MMRM, multiple latent classes are distinguished by the end-of-test item locations at which 
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their responses become speeded (if at all). The MMRM assumes that examinees belonging to the 

same latent class experience common item difficulties for items at the end of the test.  By 

assuming the effects of speededness can be captured by changes in the item difficulty parameter 

of an item, the model allows examinee ability to remain relevant to item responses that are 

speeded, representing the effect of a rushed rather than random response.   

Under the MMRM, the probability that an examinee j answers an item i correctly is 

written as follows: 

[ ])exp(1/)exp(),,|1( iggjiggjiggjij bbgbuP −+−== θθθ ,    (1) 

where  

uij is the 0/1 response of examinee j to item i (0 = incorrect response, 1 = correct 

response), 

θgj is the latent ability parameter of examinee j in class g {g = 1, 2, …, k latent classes}, 

and 

big is the difficulty parameter for item i in class g.    

Equation 1 is similar to the equation for the Rasch model, the key difference being subscript g, 

which indexes each latent class. The MMRM allows different Rasch model estimates to exist for 

each latent class; in the current application, only end-of-test item parameters were allowed to 

differ across classes, and constraints were applied to force the classes to represent classes 

distinguished by speededness. 

         Table 1 illustrates the latent class profiles of an example MMRM application involving 40 

items and 7 latent classes. For all examinees, a certain number of items at the beginning of the 

test are assumed not speeded (procedures for identifying the number of such items are described 

later). The point at which speeded responses begin to occur distinguishes the latent classes.  Note 
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that for all classes, it is assumed that the items are answered in order, such that when a given 

item response is speeded, responses to all subsequent items are also speeded. For example, in 

Table 1, item responses for examinees in latent class 3 are speeded for the last two items of the 

test (and not speeded for the first 38). Equality constraints are placed on the difficulty parameters 

for all unspeeded items across classes (for latent class 3, this corresponds to the first 38 items) as 

well as for all speeded items across classes. Further, an ordinal constraint is applied to each 

speeded item defined in each class, such that the speeded item difficulty is always higher (that is, 

more difficult) than the difficulty for the same item in the nonspeeded case.  

 Finally, in order to avoid a confounding between the latent ability (θ) and classes (g), a 

norming condition, 0=∑
i

igb , was applied to the difficulty parameters within each class (Rost, 

1990). Application of this norming condition is consistent with typical applications of the model 

and allows classes to be defined more by an item score profile than by number correct.   As a 

result, we assume an examinee’s response pattern exhibits effects of speededness when the 

relative difficulties of items at the end of the test are higher than the relative difficulties of items 

at the beginning. 

Consequently, there exist two difficulty parameters for each potentially speeded item, one 

for its speeded condition and one for its nonspeeded condition. One difficulty parameter exists 

for each item that is nonspeeded across all classes (e.g., items at the beginning of the test). In 

addition, mixing proportions, πg, indicate the proportion of examinees in each latent class, where 

1=∑
g

gπ . Finally, each class is associated with a 
gθµ parameter, representing the mean of θg, 

examinee ability, in that class (the variance of θg for all examinee classes was set to 1). In the 

current application, however, the 
gθµ  were constrained as a function of the relative difficulties of 
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speeded and nonspeeded items in each class; that is, 
gspeednonspeedgspeed bb µµµθ −= .  This was done to 

keep ability unassociated with class membership.  Alternatively, it could be assumed that these 

are parameters to be estimated; however, practical experience suggests that due to the relatively 

low numbers of examinees in each of the speeded classes, the parameters are not estimated very 

well, and their presence can deleteriously affect how the classes are defined. 

Two competing models to the MMRM are considered next. 

Two-class Mixture Rasch Model 

An alternative to the MMRM is the two-class mixture Rasch model (MRM) proposed by 

Bolt et al. (2002). The MRM is a special case of the MMRM described above, where the number 

of latent classes is equal to two. The equation for this model follows from Equation 1, where g = 

2. Instead of a single unspeeded latent class and multiple speeded latent classes, however, the 

two-class MRM defines a single speeded latent class and a single nonspeeded latent class and 

thus does not explicitly account for the different locations in the test at which speededness may 

begin. Similar to the MMRM, a constraint is placed on the difficulties within each latent class 

such that 0=∑
i

igb and mixing proportions, are estimated. But unlike the MMRM, estimation of 

the MRM proceeds without the constraint that 
gθµ  be a function of the relative item difficulties, 

as the mean can generally be well-estimated due to the larger number of examinees in the one 

speeded class. 

Table 2 illustrates the latent class profiles of a two-class MRM with 40 items and 6 

potentially speeded items. The 34 items at the beginning of the test are not speeded for either 

class, while the 6 items at the end of the test are treated as speeded for the speeded class. This 

differs from Table 1, which displays the latent class profiles for a similar test using the MMRM, 
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where multiple speeded latent classes are defined. Similar to the MMRM, equality constraints 

are placed on the difficulties for the items at the beginning of the test, where speededness is 

assumed not to be present, and an ordinal constraint is applied to each speeded item defined in 

the speeded class, such that the speeded item difficulty is always higher than the nonspeeded 

item difficulty. Despite the presence of only one speeded class, it was anticipated that the two-

class model could still accommodate conditions in which speeded examinees vary in terms of the 

item location where speededness begins.  More is said on this issue later.  

HYBRID Model 

The third model considered in this study is Yamamoto’s HYBRID model (Yamamoto 

1987; Yamamoto & Everson, 1997). The HYBRID model assumes that for each examinee that is 

speeded, there is a point on the test at which the examinee switches response strategy from 

attempting to solve the items to guessing randomly among the item alternatives.  Similar to the 

MMRM, the HYBRID model associates different latent classes of examinees with different item 

locations at which test speededness first begins, thereby allowing examinees to become speeded 

at different points on a test. Examinee performance on the test is modeled by an item response 

model up to the point where random guessing begins, and as a random Bernoulli trial thereafter. 

(In this study, a Rasch model was assumed for the item response model, but it is possible to use 

other models, for an example, see Bolt, Mroch, & Kim, 2003). Therefore, the latent class profiles 

listed in Table 1 for the MMRM could also be applied using the HYBRID model. As for the 

MMRM, speededness is always assumed to occur in an ordered fashion, such that once an 

examinee becomes speeded, the examinee is speeded on the remainder of the test.  The HYBRID 

model, thus models the probability of an examinee j answering an item i correctly as follows: 

[ ]( ) ( ) igig s
ig

s
ijijigijij bbsbuP γθθθ ×−+−== −1)exp(1/)exp(),,|1(     (2) 
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where  

uij is the 0/1 response of examinee j to item i (0 = incorrect response, 1 = correct 

response), 

θj is the latent ability parameter of examinee j, 

bi is the difficulty parameter for item i, 

γgi is the probability of examinees in class g {g = 1, 2, …, k latent classes} randomly 

guessing the correct answer to item i, and 

sig identifies whether or not an item is speeded in class g (0 = not speeded, 1 = speeded). 

In the current application of the HYBRID model, before items become speeded (before 

examinees switch to random guessing, where sig = 0), the probability of a correct response is 

modeled using a Rasch model. When items become speeded (and random guessing is used, 

where sig = 1), the probability of a correct response is then modeled as a random Bernoulli trial 

(where the expected probability of a correct response is equal to the inverse of the number of 

item responses; for example 1/5 = 0.2 for items with 5 alternatives). 

Comparisons Among the Three Speededness Models 

The three speededness models have several similarities and differences that warrant 

consideration. First, the specific versions of the speededness models used here all assume the 

Rasch model as the item response model upon which the unspeeded class of examinees will be 

based. These can be modified to accommodate other IRT models (e.g., see Bolt et al., 2003 or 

Rost, 1996), but are assumed here for simplicity. Second, each model uses latent classes to 

account for examinee differences in the occurrence of speededness effects. Third, each model 

defines speededness as emerging at the end of the test, and thus assumes a sequential ordering in 

how examinees respond to the items. 
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 The primary difference between the MMRM and HYBRID models considered is in the 

nature of the speededness effects assumed. In the MMRM, speededness effects are viewed as 

making items more difficult; in the HYBRID model, they emerge as random guessing. The 

MRM defines two latent classes and can be viewed as an approximation to the MMRM. 

Estimating Model Parameters Using Markov Chain Monte Carlo 

A Markov Chain Monte Carlo (MCMC) algorithm was used to estimate the parameters of 

each of the three speededness models. WinBUGS 1.4 software (Spiegelhalter, Thomas, & Best, 

2003) was used for these purposes. Sample WinBUGS code for estimating the MMRM is 

provided in Appendix B. Convergence of the MCMC solution was determined by inspecting 

plots of sampling histories for estimated parameters, and the means of the sampled values (after 

burn- in) were used as estimates of the parameters. The prior distributions for the MMRM and 

MRM were as follows: 

 big ~ Normal(0, 1) 

θgj ~ Normal(µg, 1) 

µθ1 ~ Normal (0, 1) (for the unspeeded class) 

and µθ2 …µθk are functions of the unspeeded and speeded item parameters (as defined 

above for the MMRM only; both µθ1 and µθ2 are estimated in the two-class MRM), 

cj ~ Categorical (π1, π2, …πk), where cj = {1, 2, …, k} is a class membership parameter, 

and 

(π1, π2, …πk) ~ Dirichlet (1, …, 1). 

For the HYBRID model,  

bi ~ Normal(0, 1) 

θj ~ Normal(0, 1) 
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cj ~ Categorical (π1, π2, …πk), and  

(π1, π2, …πk) ~ Dirichlet (1, …, 1) 

For each simulated data set examined in this study, item parameters and latent class 

mixing proportions were estimated for the three speededness models. In the estimation process, 

latent class memberships are sampled for each examinee at each stage in the chain, but vary over 

the course of the chain.  Consequently, each examinee can be viewed as having a posterior 

probability of membership in each class, and is not explicitly assigned to any one class. 

 A twofold approach was used to report results. First, the estimates of each speededness 

model were compared to the generating parameters to evaluate the recovery of item parameters 

and latent class mixing proportions. Second, the three speededness models were compared 

regarding their effectiveness at recovering end-of-test item parameters, both at the item and 

subtest score level. 

Speededness Simulation 

To examine performance of the MMRM, MRM, and HYBRID model and to compare 

their performances, several illustrative data sets were simulated using a speededness simulator 

proposed by Wollack and Cohen (2004). This simulator generates data that builds in realistic 

sources of speededness but that is too complex to estimate. Consequently, all of the speededness 

models fit in the current study were approximations to the true generating model. The 

speededness simulator assumes that speededness (a) emerges at the end of a test, (b) emerges at 

different points at the end of the test for different examinees, and (c) is manifest by an “erosion” 

in performance as time runs out and whose effects may vary for different examinees. Some 

examinees will devote the necessary time to most items and guess on only a few, while others 

will divide their time so they can read and attempt all items but may be somewhat rushed. The 
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model used to generate speeded and unspeeded item responses for examinees is as follows for 

item i and examinee j : 
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where  

n is the number of items on the test, 

ci, αi, β i, and θj correspond to the 3-parameter IRT model pseudo-guessing, 

discrimination, difficulty, and ability parameters, respectively,  

ηj (0 ≤ η ≤ 1) is the speededness point parameter, 

λj (λj ≥ 0) is the speededness rate parameter, and 

min(x, y) is the smaller of the two values x and y. 

Notice that everything to the left of the min() term is a 3-parameter IRT model, which by itself 

reflects an unspeeded item. However, the min() term in this equation builds a speeded 

component into the model; if this term is less than 1, it reflects erosion in the probability that an 

examinee correctly responds to the item. When the min() term has a value of 1 (when the item is 

not speeded), Equation 3 reflects an unspeeded 3-parameter IRT model. At the other extreme, if 

the min() term is 0, the equation reduces to a guessing model where the probability of a correct 

response is 1/(number of response alternatives). 

 The point on the test where this erosion occurs depends on the ηj parameter, which 

identifies for each examinee the proportion of unspeeded items on the test. For example, an 

examinee with ηj of .90 on a 40- item test means that speededness effects emerge 90% of the way 

through the test, or at item 36. In Equation 3, examinee responses at item n x ηj (where n is the 

number of items on the test) and thereafter are modeled by a 3-parameter IRT model multiplied 
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by the component that erodes (or decreases) the probability that a person gets the item correct. 

The amount of this erosion depends on two things: (1) the parameter λj and (2) the number of 

items away from the speededness starting point (n x ηj) that a given item is located. Once an 

examinee’s responses become speeded, the term jn
i η− in Equation 3 is raised to power λj, which 

controls how quickly the probability of a correct response decreases. Also, the farther past the 

speededness point an examinee gets on the test, the larger jn
i η− becomes, which leads to a larger 

reduction in the probability of a correct response. 

Four data sets were simulated to illustrate estimation of the MMRM, evaluate its 

parameter recovery, and to compare its results against the two-class MRM and HYBRID models. 

Each data set consisted of 40 items, and assumed the following distributions for the speededness 

point and rate parameters: ηj ~ beta (20, 2), λj ~ lognormal (3.912, 1). The distribution of the ηj 

parameter as beta (20, 2) was selected because (a) most values tended to be between .7 and 1.0, 

reflecting speededness that starts between 70% and close to 100% of the way through the test, 

and (b) the mean of this distribution, .91, corresponds to 9%, or roughly four items at the end of 

a 40 item test being speeded. Observed distributions of where speededness started across speeded 

examinees for simulated data sets indicated that six items at the end of the test appeared speeded, 

which was then used as the number of items considered in defining the latent classes in the 

speededness models. The distribution of λj was chosen as lognormal (3.912, 1) to create a 

moderately strong rate of decline in the probability of correct response for speeded examinees.  

Two data sets were simulated with 1000 examinees (300 speeded), and two were 

simulated with 1500 examinees (500 speeded). Generating item difficulty parameters and 

examinee ability parameters were drawn from a standard normal distribution, that is: bi ~ Normal 

(0, 1) and θj ~ Normal (0, 1).  In the sample size = 1500 cond ition, the generating parameters for 
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the first 1000 examinees were the same as those for the sample size = 1000 data sets, but an 

additional 500 examinees were added. Initially, after completing runs with 1000 examinees, 

model estimates for speeded groups appeared somewhat unstable, so 500 examinees (200 

speeded examinees) were added to observe model estimates for slightly larger speeded groups. 

Therefore, the only difference between the two 1000 examinee data sets and two 1500 examinee 

data sets was the number of examinees (all other parameters were identical). Each set of data is 

referred to as “set A” (with 1000 or 1500 examinees) or “set B” (with 1000 or 1500 examinees). 

Generating parameters for the pseudo-guessing (ci) and discrimination (ai) parameters were fixed 

at 0.2 and 1, respectively, such that the speededness simulator data sets corresponded to a Rasch 

model with a lower asymptote fixed at .2 and a speededness component. Fixing the generating 

pseudo-guessing parameter at .2 matched the speeded condition for the HYBRID model, where 

speededness was modeled as guessing (with probability of .2). Furthermore, fixing the pseudo-

guessing parameter to .2 and the discrimination parameters to 1 contributed to a closer balance 

between (a) realistically simulated data (by including a guessing parameter greater than zero) and 

(b) model misfit (in the form of deviations from the Rasch model assumed by each of the 

speededness models used in this study) in addition to that already caused by test speededness. 

Model parameters for each data set were estimated via MCMC using each of the three 

speededness models (MMRM, MRM, and HYBRID). In addition, item parameters were 

estimated via MCMC for a Rasch model to examine how well this model would recover item 

parameters for data sets containing speededness but without modeling speededness effects. If 

end-of-test item parameters were accurately recovered via the Rasch model for a data set 

containing speededness, a model accounting for speededness may not be warranted. For each 

model (MMRM, MRM, HYBRID, and Rasch) 15,000 iterations were sampled from the Markov 
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chain and 5,000 iterations were used as burn- in, leaving 10,000 iterations sampled from the 

posterior distribution to use as estimates of model parameters. 

To examine nonspeeded item parameter recovery, comparison of the estimated 

nonspeeded class item parameters to the nonspeeded generating item parameters from the 

speededness simulator was of primary interest. To do this, the estimated item parameters were 

first equated to the generating item parameters using test characteristic curve (TCC) equating 

(Stocking & Lord, 1983) via the computer program EQUATE (Baker, 1994) to ensure that the 

item parameter estimates were on the same scale. The first 30 items in each data set were used to 

link estimated item parameters to the generating item parameters for the full 40-item test. These 

items were used because we wanted to equate on as pure a subset of items as possible; the first 

30 items generally did not contain speededness effects in the simulated data sets.  

Model performance was examined in several ways. First, the generating and estimated 

item parameters were plotted to provide an overall display of results. Second, the generating and 

estimated latent class mixing proportions were examined to identify how well each speededness 

model was able to recover the proportion of examinees in each latent class. Third, the TCC for 

the last six test items, i.e., the expected number of items correct, was plotted to illustrate (a) the 

expected end-of-test performance under nonspeeded conditions according to each of the models 

and (b) the extent to which each model was able to “purify” item parameter estimates for the last 

six items on the test, so that they reflected what the estimates should look like in nonspeeded 

conditions. By looking at the TCC, it was expected that we could better assess any systematic 

bias that occurred for each of the models in estimating the parameters for the last six items. 

Fourth, to summarize the difference in item parameter recovery for each estimated model 

compared to the generating parameters, an expected standardized difference index (ESDI) was 
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computed for the last six items for each data set. The ESDI quantifies for each item the average 

squared difference between the estimated probabilities of correct response and true probabilities 

weighted by the distribution of ability. The equation for ESDI is as follows: 

[ ] 


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θθθ

θ θ
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where, 

)(θw  is the weight based on the distribution of ability θ , 

)(ˆ θTCCP is the estimated number correct score for a given test characteristic curve, and 

TCCP  is the true generating expected number correct score for a given test characteristic 

curve.  

Results 

 Figures 1a to 1d display plots of generating item parameters and estimated item 

parameters for the MMRM, MRM, HYBRID, and Rasch models for each simulated data set. 

These data are also presented in table form in Appendix A. Recall that the generating item 

difficulty parameters were randomly drawn from a standard normal distribution. As such, most 

item difficulties fell within a range of -2 to 2. One peculiarity occurred for data set A, where the 

last item on the test had a difficulty parameter of almost -4, which means that the item was 

extremely easy when nonspeeded; more will be said on this shortly.    

The item parameter estimates for the first 35 items in each data set were similar (where, 

within each speededness model, item parameters were fixed to be equal across all examinees) 

while the last 6 items in each data set differed somewhat across speededness models. In terms of 

item parameter recovery, the HYBRID model generally appeared to either perform similarly to 

the MRM and MMRM, or better, especially for the last item. Also, the MMRM and MRM 
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appeared to perform very similarly to each other. Finally, as expected, the Rasch model generally 

did not appear to be as accurate at recovering item parameters as the MMRM, MRM, and 

HYBRID models.  

Tables 3a to 3d display the generating and model estimated latent class mixing 

proportions for each of the simulated data sets. For the 1000-examinee data sets, 70% of 

examinees were simulated to be unspeeded and 30% were simulated to be speeded. For the 1500-

examinee data sets, 67% of examinees were simulated to be unspeeded and 33% were simulated 

to be speeded. Across data sets, the results appeared to be similar for each model. The MMRM 

identified between 14% and 18% of examinees as speeded, the MRM identified between 15% 

and 19% of examinees as speeded, and the HYBRID model identified between 24% and 29% of 

examinees as speeded. Therefore, each of the three speededness models underestimated the 

proportion of speeded examinees in the simulated data sets, although the HYBRID model most 

closely recovered the latent class mixing proportions. 

Figures 2a to 2d display the generating and estimated unspeeded class test characteristic 

curves for the last six items of each simulated data set. Across the four simulated data sets, 

several observations warrant mentioning. First, the Rasch model displayed the largest 

underestimate of nonspeeded end-of-test scores across the ability scale. This was expected 

because the Rasch model does not take into account speededness and was thus expected to be 

most affected by erosion in performance at the end of the test.  

Second, once again the MMRM and MRM tended to perform similarly; in this case, both 

appeared to underestimate the expected end-of-test scores when nonspeeded. For the 1000-

examinee data sets, these underestimates started near an ability of 0 and gradually increased in 

magnitude as ability decreased; thus, the MMRM and MRM showed larger underestimates of 
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end-of-test performance for low ability examinees. A similar pattern of results was observed for 

the larger sample size.   

By contrast, the HYBRID model tended to overestimate end-of-test performance under 

nonspeeded conditions. For the 1000-examinee data sets, the effects were evident over much of 

the ability scale, generally beginning at theta of –2 or –1.5 with the largest difference in the 

range of theta –1 to 1, where the largest number of examinees was located. 

Table 4 displays the ESDI for each speededness model and each simulated data set. The 

ESDI was computed by taking values of ability from –4 to +4 in increments of 0.05. Weights 

w(θ) were computed at each theta level from a standard normal distribution because the 

generating data were drawn from a standard normal distribution. For the set A data sets, the 

MRM had the smallest ESDI values (.04 and .04), followed by the MMRM (.08 and .05). The 

HYBRID model had larger ESDI values (.11 and .17) than the MRM and MMRM. Finally, the 

Rasch model had the largest ESDI values (.24 and .26). For set B data sets, the HYBRID model 

now had the smallest ESDI value for the 1000-examinee data set (.03) but for the 1500-examinee 

data set, the MRM had a smaller ESDI (.04). The MRM and MMRM ESDI values decreased as 

the size of the speeded group increased (MRM went from .09 to .04 and MMRM went from .11 

to .07). The Rasch model again had the largest ESDI values (.37 and .28). Overall, the MRM and 

MMRM ESDI values appeared to decrease as sample size increased, while the HYBRID model 

ESDI values increased as sample size increased. Although only based on a small number of 

analyses, this pattern is not entirely unexpected, as explained in the discussion. 

Discussion 

In this paper, we presented a Multi-class Mixture Rasch Model as a tool that can be used 

to address the issue of speededness on paper-pencil tests. Using several data sets simulated to 
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contain speededness, we illustrated the estimation of this model and compared the results to 

other existing models for speededness. All of the speededness models studied appear to be 

effective in reducing the influence of speededness on end-of-test item parameter estimates; all 

recovered generating parameters and probabilities of correct response better than the Rasch 

model.  However, the limited number and scope of the simulated data sets used to estimate the 

speededness models did not provide much evidence that one speededness model is particularly 

better than another.  More extensive simulation work may be necessary to judge the 

meaningfulness of the differences observed here.   

Despite the limitations of the current study, several interesting findings emerged. First, 

the MRM and MMRM tended to perform similarly. Initially, it was anticipated that the MMRM 

might perform slightly better than the MRM because data were simulated to exhibit speededness 

at different points near the end of the test, but this was not generally the case. The MRM, 

assuming one speeded class comprised of six speeded items, performed similarly to the MMRM, 

assuming 6 speeded classes comprised of between 1 and 6 items. This may be due in part to the 

nature of the Bayesian estimation procedure used, where latent class membership is estimated 

along with the item parameter estimates and latent class mixing proportions.  As noted, each 

examinee is actually associated with a posterior probability of belonging to each class; hence it 

may be possible for the two-class model to provide a close enough approximation to make it just 

as useful as one that explicitly accounts for the location at which speededness occurs.  Because 

we are mainly interested in modeling the item parameter estimates under nonspeeded conditions, 

a precise account of what occurs for the speeded examinees may not be critical. Bigger 

differences among the models might be observed if the purpose were to identify individuals for 
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whom a test is speeded, perhaps for purposes of excluding such examinees from the equating 

process (Wollack, Cohen, & Wells, 2003) 

      Second, the HYBRID model performed quite well and in many respects better than the MRM 

and MMRM, which was surprising given that the simulated data included general erosion in 

performance at the end of the test, and not necessarily to chance levels (though performance did 

frequently reduce to chance for speeded items). Interestingly, however, although the HYBRID 

model generally underestimated the mixing proportions for each latent class of examinees, it 

overestimated the effects of speededness, as evidenced by the TCC differences. Consequently, 

the better performance of the HYBRID model can probably best be attributed to a cancellation of 

effects associated with an underestimation of the number of speeded examinees and an 

overestimation of speededness effects. Of course, the critical question that arises in evaluating 

this finding is whether the speededness simulator used is actually the manner in which 

speededness effects occur on real tests.  The generating model was chosen because it does have 

perhaps the most rigorous support as a realistic model for speededness, and is also a model that 

differed from any of the models used here to remove speededness effects. 

Even if this model is realistic, it is clear that more simulation work is needed to evaluate 

the performance of the estimation methods considered in this paper.  For example, alternative 

values or distributions could be chosen from which to draw values for the speededness 

parameters of the speededness simulator. In this study, we chose a beta (20, 2) distribution for 

the speededness point parameter and lognormal (3.912, 1) for the speededness rate parameter. 

More consideration should be given as to whether these or alternative distributional choices 

would be more realistic. The logical next step in this project may be to pursue a range of 

simulation conditions anticipated to affect the three speededness models including such variables 
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as: (1) the magnitude and variability of speededness effects, (2) the difficulty of end-of-test 

items, and (3) the sample size. The difficulty of end-of-test items would be an interesting 

condition to examine because of its potential effects on the HYBRID model’s assumption that 

speeded examinees switch to random guessing at the end of the test. Often tests are designed so 

as to have more difficult items at the end, unlike the very easy item simulated to occur at the end 

of the set A dataset. 

A third practical finding from this study that deserves greater attention is the tendency for 

all of the models to underestimate the number of speeded examinees.  To some degree, this may 

again be a function of the way in which the generator introduces speededness through a gradual 

erosion of performance.  However, it may also be a consequence of the estimation method, and 

the use of priors on the mixing proportions.  The fact that the proportion of examinees in speeded 

classes tended to be low may be due to a certain level of bias when a Bayesian method was used 

to estimate the models.  It would be interesting to compare methods when the mixing proportions 

are fixed at their true values as a way of examining which model comes closer to addressing the 

nature of speededness introduced by this speededness generator.    

Finally, it should be noted that practical applications of these models require specifying 

the number of items at the end of the test that are speeded. In practice this number of items is not 

known in advance as was assumed here. Thus, additional examination of methods for adequately 

specifying the number of end-of-test items that are speeded would be useful. For example, while 

not included in this study, examination of a nonlinear two factor exploratory factor analysis for 

several of the data sets used in this study revealed that the last six items at the end of the test 

loaded on a second factor that could be interpreted as a speededness factor.  It may be reasonable 
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to use such analyses as a preliminary way of checking how many items appear to have been 

affected by speededness. 
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Table 1 
Illustration of latent class profiles for an MMRM speededness model with 40 items and 7 latent 
classes.* 
 

 Items 
Latent 
Class 1 2 3 … 32 33 34 35 36 37 38 39 40 

1 U U U … U U U U U U U U U 

2 U U U … U U U U U U U U S 

3 U U U … U U U U U U U S S 

4 U U U … U U U U U U S S S 

5 U U U … U U U U U S S S S 

6 U U U … U U U U S S S S S 

7 U U U … U U U S S S S S S 

U = Unspeeded item. 
S = Speeded item. 
* These same latent class profiles apply to the HYBRID model, however the nature of 
speededness (defined by the “S” items) is modeled differently across the two models. 
 
 
 
 
 
 
Table 2 
Illustration of latent class profiles for a MRM speededness model with 40 items and a speeded 
class defined by the last six items on the test. 
 

 Items 
Latent 
Class 1 2 3 … 32 33 34 35 36 37 38 39 40 

1 U U U … U U U U U U U U U 

2 U U U … U U U S S S S S S 

U = Unspeeded item. 
S = Speeded item. 
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Table 3a 
Mixing Proportions for Simulated Data Set A, 1000 Examinees 
 

Speeded Class MMRM MRM HYBRID Generating* Final 
Generating** 

1 (unspeeded) .86 .83 .76 .70 .70 
2 (1 speed) .02  .02 .03 
3 (2 speeded) .04  .05 .07 
4 (3 speeded ) .03  .06 .05 
5 (4 speeded) .01  .02 .03 
6 (5 speeded) .02  .06 .05 
7 (6 speeded) .02 .17 .03 

.30 

.03 
*The proportion of examinees simulated to contain speededness was specified at 300 examinees 
(300/1000 = 30%). 
**The proportion of examinees corresponding to each speeded class based on simulation 
parameters (which was generated from a Beta(20, 2) distribution); note that there were 
examinees tha t differed from modeled classes, most having more than 6 items speeded (these 
accounted for 4% of examinees or 13% of the speeded group). 
 
 
 
Table 3b 
Mixing Proportions for Simulated Data Set A, 1500 Examinees 
 

Speeded Class MMRM MRM HYBRID Generating* Final 
Generating** 

1 (unspeeded) .82 .81 .73 .67 .67 
2 (1 speed) .03  .03 .03 
3 (2 speeded) .04  .06 .09 
4 (3 speeded ) .03  .04 .06 
5 (4 speeded) .03  .05 .04 
6 (5 speeded) .03  .05 .04 
7 (6 speeded) .02 .19 .04 

.33 

.04 
*The proportion of examinees simulated to contain speededness was specified at 500 examinees 
(500/1500 = 33%). 
**The proportion of examinees corresponding to each speeded class based on simulation 
parameters (which was generated from a Beta(20, 2) distribution); note that there were 
examinees that differed from modeled classes, most having more than 6 items speeded (these 
accounted for 3% of examinees or 9% of the speeded group). 
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Table 3c 
Mixing Proportions for Simulated Data Set B, 1000 Examinees 
 

Speeded Class MMRM MRM HYBRID Generating* Final 
Generating** 

1 (unspeeded) .83 .85 .72 .70 .70 
2 (1 speed) .03  .06 .02 
3 (2 speeded) .04  .04 .07 
4 (3 speeded ) .03  .05 .04 
5 (4 speeded) .01  .02 .04 
6 (5 speeded) .03  .06 .05 
7 (6 speeded) .02 .15 .04 

.30 

.02 
*The proportion of examinees simulated to contain speededness was specified at 300 examinees 
(300/1000 = 30%). 
**The proportion of examinees corresponding to each speeded class based on simulation 
parameters (which was generated from a Beta(20, 2) distribution); note that there were 
examinees that differed from modeled classes, most having more than 6 items speeded (these 
accounted for 6% of examinees or 20% of the speeded group). 
 
 
Table 3d 
Mixing Proportions for Simulated Data Set B, 1500 Examinees 
 

Speeded 
Class 

MMRM MRM HYBRID Generating* Final 
Generating** 

1 (unspeed) .82 .81 .71 .67 .67 
2 (speed 1) .02  .04 .02 
3 (speed 2) .06  .07 .09 
4 (speed 3) .03  .05 .05 
5 (speed 4) .02  .04 .04 
6 (speed 5) .03  .05 .05 
7 (speed 6) .02 .19 .04 

.33 

.02 
*The proportion of examinees simulated to contain speededness was specified at 500 examinees 
(500/1500 = 33%). 
**The proportion of examinees corresponding to each speeded class based on simulation 
parameters (which was generated from a Beta(20, 2) distribution); note that there were 
examinees that differed from modeled classes, most having more than 6 items speeded (these 
accounted for 6% of examinees or 18% of the speeded group). 
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Table 4 
Standardized Difference Index Based on TCCs for Last 6 Items of Simulated Data Sets 
 

Model 
Data Set 

Number of 
Examinees* 

MMRM MRM HYBRID Rasch 

1000 0.08 0.04 0.11 0.24 
Set A 

1500 0.05 0.04 0.17 0.26 

1000 0.11 0.09 0.03 0.37 
Set B 

1500 0.07 0.04 0.07 0.28 

*1000 examinee data sets had 300 speeded examinees; 1500 examinee data sets had 500 speeded 
examinees. 
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Figure 1a 
Generating Item Parameters and Item Parameter Estimates, Simulated Data Set A, 1000 
Examinees 
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Figure 1b 
Generating Item Parameters and Item Parameter Estimates, Simulated Data Set A, 1500 
Examinees 
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Figure 1c 
Generating Item Parameters and Item Parameter Estimates, Simulated Data Set B, 1000 
Examinees 
 

-4

-3

-2

-1

0

1

2

3

4

0 5 10 15 20 25 30 35 40
Item

D
iff

ic
ul

ty

Generating

HYBRID

MRM
MMRM
Rasch

 
 
Figure 1d 
Generating Item Parameters and Item Parameter Estimates, Simulated Data Set B, 1500 
Examinees 
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Figure 2a 
Test Characteristic Curves for Last Six Items, Simulated Data Set A, 1000 Examinees 
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Figure 2b 
Test Characteristic Curves for Last Six Items, Simulated Data Set A, 1500 Examinees 
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Figure 2c 
Test Characteristic Curves for Last Six Items, Simulated Data Set B, 1000 Examinees  
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Figure 2d 
Test Characteristic Curves for Last Six Items, Simulated Data Set B, 1500 Examinees 
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Appendix A 
 

Generating Item Parameters and Model Item Parameter Estimates
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Data Set A, 1000 Examinees 
 

 Generating MMRM MRM HYBRID Rasch 
 b b̂  SE b̂  SE b̂  SE b̂  SE 
1 -0.30 -0.25 0.07 -0.27 0.07 -0.25 0.08 -0.32 0.08 
2 2.02 1.23 0.07 1.21 0.07 1.23 0.08 1.15 0.08 
3 -1.61 -1.33 0.09 -1.36 0.09 -1.34 0.09 -1.41 0.09 
4 -0.85 -0.65 0.07 -0.67 0.07 -0.65 0.08 -0.72 0.08 
5 0.36 0.35 0.07 0.33 0.07 0.35 0.08 0.28 0.07 
6 -0.22 -0.12 0.07 -0.13 0.07 -0.12 0.07 -0.19 0.08 
7 -1.65 -1.34 0.09 -1.36 0.09 -1.34 0.09 -1.41 0.09 
8 0.36 0.35 0.07 0.34 0.07 0.35 0.07 0.28 0.07 
9 -0.74 -0.61 0.07 -0.63 0.07 -0.61 0.08 -0.68 0.08 
10 -1.08 -0.93 0.08 -0.95 0.08 -0.93 0.08 -1.00 0.09 
11 0.28 0.35 0.07 0.33 0.07 0.35 0.07 0.27 0.08 
12 -0.48 -0.46 0.07 -0.48 0.07 -0.46 0.08 -0.53 0.08 
13 -0.01 -0.04 0.07 -0.06 0.07 -0.04 0.07 -0.12 0.08 
14 1.40 1.11 0.07 1.09 0.07 1.11 0.08 1.03 0.08 
15 0.17 0.16 0.07 0.15 0.07 0.17 0.07 0.09 0.08 
16 -1.77 -1.54 0.09 -1.57 0.09 -1.55 0.10 -1.62 0.10 
17 1.36 0.98 0.07 0.96 0.07 0.98 0.07 0.90 0.08 
18 0.75 0.55 0.07 0.53 0.07 0.55 0.07 0.48 0.07 
19 -0.85 -0.60 0.07 -0.62 0.07 -0.60 0.08 -0.67 0.08 
20 -0.31 -0.19 0.07 -0.20 0.07 -0.19 0.08 -0.26 0.08 
21 -0.82 -0.62 0.07 -0.64 0.07 -0.62 0.08 -0.70 0.08 
22 1.36 0.86 0.07 0.85 0.07 0.87 0.07 0.79 0.08 
23 -1.10 -0.94 0.08 -0.97 0.08 -0.95 0.09 -1.02 0.09 
24 1.52 1.05 0.07 1.03 0.07 1.06 0.08 0.97 0.08 
25 -0.23 -0.17 0.07 -0.19 0.07 -0.17 0.08 -0.25 0.08 
26 -0.55 -0.44 0.07 -0.45 0.07 -0.43 0.08 -0.51 0.08 
27 -0.01 0.04 0.07 0.02 0.07 0.04 0.07 -0.03 0.08 
28 -1.05 -0.75 0.08 -0.77 0.08 -0.75 0.08 -0.82 0.08 
29 0.82 0.67 0.07 0.66 0.07 0.67 0.07 0.60 0.07 
30 0.86 0.71 0.07 0.69 0.07 0.71 0.07 0.63 0.07 
31 -1.71 -1.41 0.09 -1.43 0.09 -1.41 0.09 -1.48 0.10 
32 -0.65 -0.49 0.07 -0.51 0.07 -0.49 0.08 -0.57 0.08 
33 1.69 1.07 0.07 1.05 0.07 1.08 0.08 0.99 0.08 
34 1.42 1.04 0.07 1.03 0.07 1.05 0.08 0.97 0.08 
35 0.01 0.21 0.07 0.14 0.08 0.18 0.08 0.15 0.07 
36 -1.66 -1.13 0.09 -1.31 0.10 -1.31 0.11 -1.02 0.09 
37 1.21 1.02 0.07 0.96 0.08 1.00 0.08 1.01 0.08 
38 1.08 0.79 0.07 0.67 0.08 0.71 0.08 0.81 0.08 
39 -0.17 0.08 0.08 -0.02 0.09 -0.03 0.09 0.31 0.07 
40 -3.93 -1.81 0.25 -1.86 0.19 -2.51 0.32 -0.94 0.08 
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Data Set A, 1500 Examinees 
 

 Generating MMRM MRM HYBRID Rasch 
 b b̂  SE b̂  SE b̂  SE b̂  SE 
1 -0.30 -0.22 0.06 -0.22 0.06 -0.20 0.06 -0.27 0.06 
2 2.02 1.28 0.06 1.29 0.06 1.31 0.06 1.22 0.06 
3 -1.61 -1.23 0.07 -1.23 0.07 -1.21 0.07 -1.28 0.07 
4 -0.85 -0.73 0.06 -0.72 0.06 -0.70 0.07 -0.78 0.07 
5 0.36 0.19 0.06 0.21 0.05 0.23 0.06 0.14 0.06 
6 -0.22 -0.15 0.06 -0.15 0.06 -0.13 0.06 -0.20 0.06 
7 -1.65 -1.39 0.07 -1.40 0.07 -1.38 0.08 -1.45 0.08 
8 0.36 0.29 0.06 0.30 0.06 0.32 0.06 0.24 0.06 
9 -0.74 -0.58 0.06 -0.58 0.06 -0.56 0.07 -0.63 0.07 
10 -1.08 -0.81 0.06 -0.80 0.06 -0.78 0.07 -0.86 0.07 
11 0.28 0.10 0.06 0.11 0.06 0.13 0.06 0.05 0.06 
12 -0.48 -0.32 0.06 -0.31 0.06 -0.30 0.06 -0.37 0.06 
13 -0.01 0.03 0.06 0.04 0.06 0.05 0.06 -0.02 0.06 
14 1.40 1.01 0.06 1.02 0.06 1.04 0.06 0.95 0.06 
15 0.17 0.03 0.06 0.04 0.06 0.05 0.06 -0.02 0.06 
16 -1.77 -1.48 0.08 -1.49 0.08 -1.48 0.08 -1.54 0.08 
17 1.36 0.90 0.06 0.91 0.06 0.93 0.06 0.85 0.06 
18 0.75 0.54 0.05 0.55 0.06 0.56 0.06 0.48 0.06 
19 -0.85 -0.64 0.06 -0.64 0.06 -0.62 0.07 -0.69 0.07 
20 -0.31 -0.27 0.06 -0.26 0.06 -0.24 0.06 -0.32 0.06 
21 -0.82 -0.65 0.06 -0.65 0.06 -0.63 0.07 -0.70 0.07 
22 1.36 0.97 0.06 0.98 0.06 1.00 0.06 0.92 0.06 
23 -1.10 -0.83 0.06 -0.83 0.06 -0.81 0.07 -0.88 0.07 
24 1.52 1.03 0.06 1.04 0.06 1.06 0.06 0.97 0.06 
25 -0.23 -0.22 0.06 -0.21 0.06 -0.19 0.06 -0.27 0.06 
26 -0.55 -0.43 0.06 -0.42 0.06 -0.41 0.06 -0.48 0.06 
27 -0.01 -0.01 0.06 0.00 0.06 0.01 0.06 -0.06 0.06 
28 -1.05 -0.83 0.06 -0.83 0.06 -0.81 0.07 -0.88 0.07 
29 0.82 0.57 0.05 0.58 0.06 0.60 0.06 0.52 0.06 
30 0.86 0.68 0.06 0.69 0.06 0.71 0.06 0.62 0.06 
31 -1.71 -1.40 0.07 -1.40 0.07 -1.38 0.08 -1.45 0.08 
32 -0.65 -0.47 0.06 -0.47 0.06 -0.45 0.06 -0.52 0.06 
33 1.69 1.03 0.06 1.04 0.06 1.06 0.06 0.98 0.06 
34 1.42 0.93 0.06 0.95 0.06 0.96 0.06 0.88 0.06 
35 0.01 0.05 0.06 0.03 0.06 0.03 0.07 0.03 0.06 
36 -1.66 -1.13 0.07 -1.26 0.08 -1.28 0.09 -0.93 0.07 
37 1.21 0.84 0.06 0.74 0.07 0.77 0.07 0.84 0.06 
38 1.08 0.97 0.06 0.87 0.07 0.90 0.07 1.00 0.06 
39 -0.17 0.12 0.06 0.02 0.07 0.00 0.08 0.37 0.06 
40 -3.93 -2.19 0.24 -1.93 0.16 -2.91 0.36 -0.86 0.07 
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Data Set B, 1000 Examinees 
 

 Generating MMRM MRM HYBRID Rasch 
 b b̂  SE b̂  SE b̂  SE b̂  SE 
1 0.09 0.10 0.07 0.11 0.07 0.11 0.07 0.10 0.07 
2 0.76 0.39 0.07 0.39 0.07 0.39 0.08 0.38 0.07 
3 -2.41 -1.75 0.10 -1.75 0.10 -1.75 0.11 -1.75 0.11 
4 1.76 1.40 0.07 1.41 0.07 1.40 0.08 1.39 0.08 
5 0.94 0.77 0.07 0.78 0.07 0.78 0.07 0.77 0.07 
6 1.68 1.18 0.07 1.19 0.07 1.19 0.08 1.18 0.08 
7 -1.82 -1.57 0.09 -1.57 0.09 -1.57 0.10 -1.58 0.10 
8 -0.87 -0.57 0.07 -0.56 0.07 -0.56 0.08 -0.57 0.08 
9 -0.70 -0.57 0.07 -0.56 0.07 -0.57 0.08 -0.57 0.08 
10 0.39 0.37 0.07 0.38 0.07 0.38 0.07 0.37 0.07 
11 -0.22 -0.11 0.07 -0.11 0.07 -0.11 0.08 -0.11 0.08 
12 0.73 0.59 0.07 0.60 0.07 0.59 0.08 0.59 0.07 
13 0.64 0.46 0.07 0.47 0.07 0.47 0.08 0.46 0.07 
14 0.57 0.47 0.07 0.48 0.07 0.48 0.08 0.46 0.07 
15 -2.12 -1.60 0.10 -1.60 0.10 -1.60 0.10 -1.60 0.10 
16 0.53 0.53 0.07 0.54 0.07 0.54 0.08 0.53 0.07 
17 -0.67 -0.40 0.07 -0.40 0.07 -0.40 0.08 -0.40 0.08 
18 -1.10 -0.87 0.08 -0.86 0.08 -0.86 0.09 -0.87 0.08 
19 1.65 1.17 0.07 1.18 0.07 1.18 0.08 1.17 0.08 
20 1.32 1.09 0.07 1.10 0.07 1.10 0.08 1.08 0.08 
21 1.2 0.88 0.07 0.89 0.07 0.89 0.07 0.88 0.08 
22 2.04 1.41 0.07 1.42 0.07 1.42 0.08 1.40 0.08 
23 0.33 0.32 0.07 0.33 0.07 0.33 0.08 0.32 0.07 
24 0.74 0.56 0.07 0.57 0.07 0.57 0.07 0.56 0.07 
25 2.03 1.40 0.07 1.41 0.07 1.41 0.08 1.40 0.08 
26 -1.56 -1.12 0.08 -1.12 0.08 -1.13 0.09 -1.12 0.09 
27 -1.76 -1.35 0.09 -1.35 0.09 -1.35 0.10 -1.35 0.10 
28 1.36 1.05 0.07 1.05 0.07 1.06 0.08 1.04 0.08 
29 2.00 1.34 0.07 1.34 0.07 1.34 0.08 1.33 0.08 
30 -0.61 -0.41 0.07 -0.41 0.07 -0.41 0.08 -0.42 0.08 
31 -1.08 -0.81 0.08 -0.81 0.08 -0.81 0.09 -0.82 0.08 
32 -1.51 -1.18 0.08 -1.18 0.08 -1.18 0.09 -1.18 0.09 
33 1.65 1.23 0.07 1.24 0.07 1.24 0.08 1.23 0.08 
34 -0.14 -0.02 0.07 -0.01 0.07 -0.02 0.08 -0.02 0.08 
35 0.82 0.83 0.07 0.78 0.08 0.81 0.08 0.83 0.08 
36 -1.39 -0.79 0.09 -0.92 0.10 -0.97 0.11 -0.62 0.08 
37 0.08 0.23 0.07 0.16 0.08 0.15 0.09 0.34 0.07 
38 0.82 0.77 0.08 0.70 0.08 0.72 0.09 0.90 0.07 
39 -1.06 -0.64 0.12 -0.60 0.11 -0.77 0.13 -0.15 0.08 
40 -0.98 -0.38 0.15 -0.30 0.10 -0.66 0.20 0.05 0.08 
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Data Set B, 1500 Examinees 
 

 Generating MMRM MRM HYBRID Rasch 
 b b̂  SE b̂  SE b̂  SE b̂  SE 
1 0.09 0.08 0.05 0.08 0.06 0.10 0.06 0.04 0.06 
2 0.76 0.63 0.05 0.65 0.05 0.66 0.06 0.60 0.06 
3 -2.41 -1.89 0.09 -1.89 0.09 -1.88 0.09 -1.93 0.09 
4 1.76 1.12 0.06 1.12 0.06 1.14 0.06 1.08 0.06 
5 0.94 0.68 0.05 0.69 0.05 0.71 0.06 0.65 0.06 
6 1.68 1.17 0.06 1.19 0.06 1.21 0.06 1.14 0.06 
7 -1.82 -1.57 0.08 -1.56 0.08 -1.54 0.08 -1.60 0.08 
8 -0.87 -0.61 0.06 -0.60 0.06 -0.58 0.06 -0.64 0.07 
9 -0.7 -0.48 0.06 -0.46 0.06 -0.45 0.06 -0.50 0.06 
10 0.39 0.31 0.06 0.32 0.05 0.34 0.06 0.28 0.06 
11 -0.22 -0.21 0.06 -0.20 0.06 -0.18 0.06 -0.24 0.06 
12 0.73 0.63 0.05 0.64 0.05 0.66 0.06 0.59 0.06 
13 0.64 0.52 0.05 0.53 0.05 0.55 0.06 0.49 0.06 
14 0.57 0.47 0.05 0.48 0.06 0.50 0.06 0.44 0.06 
15 -2.12 -2.03 0.09 -2.03 0.09 -2.02 0.10 -2.06 0.09 
16 0.53 0.37 0.05 0.38 0.05 0.40 0.06 0.34 0.06 
17 -0.67 -0.57 0.06 -0.55 0.06 -0.54 0.07 -0.59 0.07 
18 -1.1 -0.85 0.06 -0.84 0.06 -0.83 0.07 -0.88 0.07 
19 1.65 1.25 0.06 1.27 0.06 1.28 0.06 1.22 0.06 
20 1.32 0.90 0.06 0.92 0.06 0.94 0.06 0.87 0.06 
21 1.2 0.91 0.06 0.93 0.06 0.95 0.06 0.88 0.06 
22 2.04 1.28 0.06 1.30 0.06 1.31 0.06 1.25 0.06 
23 0.33 0.31 0.05 0.32 0.05 0.34 0.06 0.28 0.06 
24 0.74 0.49 0.05 0.50 0.05 0.52 0.06 0.46 0.06 
25 2.03 1.30 0.06 1.32 0.06 1.34 0.06 1.27 0.06 
26 -1.56 -1.17 0.07 -1.16 0.07 -1.15 0.07 -1.20 0.07 
27 -1.76 -1.44 0.07 -1.43 0.07 -1.42 0.08 -1.47 0.08 
28 1.36 0.93 0.06 0.95 0.06 0.97 0.06 0.90 0.06 
29 2 1.29 0.06 1.30 0.06 1.32 0.06 1.25 0.06 
30 -0.61 -0.45 0.06 -0.44 0.06 -0.42 0.06 -0.48 0.06 
31 -1.08 -0.84 0.06 -0.83 0.06 -0.82 0.07 -0.87 0.07 
32 -1.51 -1.10 0.07 -1.09 0.07 -1.07 0.07 -1.13 0.07 
33 1.65 1.00 0.06 1.01 0.06 1.03 0.06 0.97 0.06 
34 -0.14 -0.11 0.06 -0.10 0.06 -0.09 0.06 -0.14 0.06 
35 0.82 0.64 0.06 0.62 0.06 0.65 0.06 0.63 0.06 
36 -1.39 -0.90 0.07 -1.02 0.09 -1.03 0.09 -0.73 0.07 
37 0.08 0.14 0.06 0.05 0.07 0.05 0.07 0.23 0.06 
38 0.82 0.86 0.06 0.78 0.07 0.81 0.07 0.93 0.06 
39 -1.06 -0.54 0.10 -0.59 0.10 -0.68 0.11 -0.04 0.06 
40 -0.98 -0.55 0.11 -0.54 0.10 -0.83 0.17 -0.04 0.06 
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Appendix B 

Sample WinBUGS Code for the MMRM 
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model 
{ 
for (i in 1:NE){ 
for (j in 1:NI){ 
p[i,j]<- exp((theta[i]-b[gmem[i],j]))/(1+exp((theta[i]-b[gmem[i],j]))) 
}} 
 
for (i in 1:NE){ 
for (j in 1:NI){ 
r[i,j]~dbern(p[i,j]) 
}} 
 
for (j in 1:34){ 
beta[j]~dnorm(0.,1.) 
betas[j]<-beta[j] 
} 
 
for (j in 35:40){ 
beta[j]~dnorm(0.,1.) 
betas[j]~dlnorm(0,0.25) 
} 
 
for (i in 1:NE){ 
theta[i]~dnorm(mu[gmem[i]],1.) 
gmem[i]~dcat(pi[1:7]) 
} 
 
pi[1:7]~ddirch(alphat[]) 
mu[1]~dnorm(0,1) 
 
for (i in 2:7){ 
mu[i]<-mean(betat[1,1:NI])-mean(betat[i,1:NI]) 
} 
for (i in 1:7){ 
for (j in 1:NI){ 
betat[i,j]<-beta[j]+(speed[i,j])*betas[j] 
}} 
 
for (i in 1:7){ 
for (j in 1:NI){ 
b[i,j]<-betat[i,j]-mean(betat[i,1:NI]) 
}} 
} 
 
list(NE=1000, NI=40,alphat=c(1,1,1,1,1,1,1),speed= 
structure(.Data=c( 
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1, 
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1, 
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1, 
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1, 
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1, 
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1), .Dim=c(7,40)), 
r=structure(.Data=c( 
0,0,1,0,0,1,1,1,1,1,0,1,0,1,1,1,0,0,0,0,1,1,1,0,1,1,1,0,0,1,1,1,0,0,0,0,0,0,1,0, 
1,0,1,1,1,1,0,1,0,1,0,0,1,0,0,1,0,1,0,1,1,0,1,0,1,0,0,1,0,1,1,1,0,1,0,1,0,0,1,0, 
. 
. 
. 
1,0,0,1,0,0,1,0,0,1,1,1,0,1,0,1,0,1,1,0,0,0,1,0,0,1,0,0,0,0,1,1,0,0,1,1,0,1,1,1, 
0,1,1,1,1,1,1,0,1,1,1,1,1,1,1,1,0,1,1,1,1,1,1,0,1,1,1,1,0,1,1,1,0,1,1,1,1,1,1,1), .Dim=c(1000,40))) 


